Sync SQL data in large scale using Azure SQL Data Sync

“Azure SQL Data Sync allows users to synchronize data between Azure SQL Databases and SQL Server databases in one-direction or bi-direction. This feature was first introduced in 2012. By that time, people didn’t host a lot of large databases in Azure. Some size limitations were applied when we built the data sync service, including up to 30 databases (five on-premises SQL Server databases) in a single sync group, and up to 500 tables in any database in a sync group.

Today, there are more than two million Azure SQL Databases and the maximum database size is 4TB. But those limitations of data sync are still there. It is mainly because that syncing data is a size of data operation. Without an architectural change, we can’t ensure the service can sustain the heavy load when syncing in a large scale. We are working on some improvements in this area. Some of these limitations will be raised or removed in the future. In this article, we are going to show you how to use data sync to sync data between large number of databases and tables, including some best practices and how to temporarily work around database and table limitations”

Read more at https://azure.microsoft.com/en-gb/blog/sync-sql-data-in-large-scale-using-azure-sql-data-sync/

 

Master-Sync-Group

Azure Event Grid reaches GA

https://docs.microsoft.com/en-us/azure/event-grid/overview

Event Grid

Azure Event Grid generally available
Easily subscribe and react to interesting events happening in any Azure service or in your own apps with Azure Event Grid, a fully managed event routing service. Event Grid removes the need to continuously poll by reliably routing events at high scale and low latency. In addition, take advantage of the rich coverage and reactive event model enabled by Event Grid in your serverless architectures. These features were added as part of the general availability (GA) release:

Richer scenarios enabled through integration with more services: Azure Storage General Purpose v2 accounts were added; Azure IoT Hub and Azure Service Bus were added as new event publishers; and Azure Event Hubs was added as a new destination for events.
Availability in more regions: It’s now available in the following regions: West US, East US, West US 2, East US 2, West Central US, Central US, West Europe, North Europe, Southeast Asia, and East Asia, with more coming soon.
Increased reliability and service-level agreement (SLA): We now have a 24-hour retry policy with exponential back off for event delivery. We also offer 99.99 percent availability with a financially backed SLA for your production workloads.
Better developer productivity: New management and data plane SDKs help make the development process smoother.

Event Grid is now generally available. GA pricing will be effective for billing periods beginning on or after April 1, 2018. Learn more on the overview and pricing webpages or via the Azure Blog.

Recently released: Azure Data Architecture Guide (ADAG) – 36 Articles for Data Professionals

The Azure Data Architecture Guide:

The guide is structured around a basic pivot: The distinction between relational data and non-relational data.

Relational data is generally stored in a traditional RDBMS or a data warehouse. It has a pre-defined schema (“schema on write”) with a set of constraints to maintain referential integrity. Most relational databases use Structured Query Language (SQL) for querying. Solutions that use relational databases include online transaction processing (OLTP) and online analytical processing (OLAP).

Non-relational data is any data that does not use the relational model found in traditional RDBMS systems. This may include key-value data, JSON data, graph data, time series data, and other data types. The term NoSQL refers to databases that are designed to hold various types of non-relational data. However, the term is not entirely accurate, because many non-relational data stores support SQL compatible queries. Non-relational data and NoSQL databases often come up in discussions of big data solutions. A big data architecture is designed to handle the ingestion, processing, and analysis of data that is too large or complex for traditional database systems.

Within each of these two main categories, the Data Architecture Guide contains the following sections:

  • Concepts. Overview articles that introduce the main concepts you need to understand when working with this type of data.
  • Scenarios. A representative set of data scenarios, including a discussion of the relevant Azure services and the appropriate architecture for the scenario.
  • Technology choices. Detailed comparisons of various data technologies available on Azure, including open source options. Within each category, we describe the key selection criteria and a capability matrix, to help you choose the right technology for your scenario.

This guide is not intended to teach you data science or database theory — you can find entire books on those subjects. Instead, the goal is to help you select the right data architecture or data pipeline for your scenario, and then select the Azure services and technologies that best fit your requirements. If you already have an architecture in mind, you can skip directly to the technology choices.

Traditional RDBMS

Concepts

Scenarios

Big data and NoSQL

Concepts

Scenarios

Cross-cutting concerns

MEAN.js with Cosmos DB on Azure

(a YouTube series by John Papa)

Cosmos DB is of significant interest to myself for projects I have been engaged in for the past couple of years which use MongoDB and MEAN in several ways. Scaling for us has always been a bit of a pain with MongoDB, and Cosmos DB on Azure looks to be relieving a lot of the headaches we have had.

MEAN stands for MongoDB, Express, Angular and Node.

I am not the author of these – this is a reference list to a YouTube series by John Papa introducing MEAN with Cosmos DB on Azure. I would normally just link directly to the creators blog or post for a series such as this, but it seems to be offline just now so I thought I would share a full list of current videos here – hopefully the original link will work again soon – which is https://johnpapa.net/angular-cosmosdb-1/.


MEAN.js with Cosmos DB – Part 1: Introduction

John builds a lot of apps with MongoDB, Express, Angular and Node (MEAN). MongoDB just works so well with these, but recently he has been using Cosmos DB on Azure in its place because it’s easy to use, scale, is super fast, and he does not have to change how he codes.


MEAN.js with Cosmos DB – Part 2: Creating the Node.js and Express App

Creating a Node.js and Express App along with the Angular CLI. Then create a web API endpoint and try it out.


MEAN.js with Cosmos DB – Part 3: Angular and Express APIs

The A in MEAN stands for Angular. This video shows how to build an Angular UI that talks to the Express API, with GET, POST, PUT, and DELETE.


MEAN.js with Cosmos DB – Part 4: Creating and Deploying Cosmos DB

Using the Azure CLI, to create the Cosmos DB account to represent a MongoDB model database and deploy it to Azure. Then view what we created in the Azure portal.


MEAN.js with Cosmos DB – Part 5: Querying Cosmos DB

How to connect to the MongoDB database with Azure Cosmos DB, using Mongoose, and query it for data.

You can subscribe to John’s YouTube series at https://www.youtube.com/playlist?list=PLbnXt_I6OfBWU9JiDNewZm11-7eFQf70M or follow him on twitter @John_Papa

Azure Cosmos DB with Scott Hanselman

Published on Jun 27, 2017

Kirill Gavrylyuk stops by Azure Friday to talk Cosmos DB with Scott Hanselman.

Watch this quick overview of the industry’s first globally distributed multi-model database service followed by a demo of moving an existing MongoDB app to Cosmos DB with a single config change.

For more information, see: https://azure.microsoft.com/en-us/services/cosmos-db/